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ON A CLASS OF REFLECTION GEOMETRIES

Nota del] m. e. CARLO FELICE MANARA e MARIO MARCHI (*)

(Adunanza del 10 ottobre 1991)

Sunto. — In questa Nota si introduce un sistema di assiomi che permette di
caratterizzare una particolare classe di geometrie di riflessione. Tali geometrie consistono
di uno spozio di incidenza (detto anche spazio lineare o spazio di rette) con porallelismo
dotato di un ingieme transitive di dilatazioni involutorie e di un insieme regolare di trasla-
zioni. Hsse risultano quindi anche rappresentabili mediante una opportuna classe di cappi
di ineidenza.

Introduction

By a reflection we usually understand an involutory movement
in an absolute plane with a pointwise fixed line. As a matter of fact
it is well known the possibility to define in an abstract way an absolute
space by means of a group I' provided with a set of involutory ele-
ments fulfilling suitable axioms. The group T' is named reflection group
(Spiegelungsgruppe) and reflection geometry (Spiegelungsgeometrie) is the
geometric structure defined in this way (see e.g. [2], [4)).

(*) This research is supported partially by the Italian Ministry of University and Scien-
tific and Technological Research (M.U.R.S.T.) (40% and 60% grants) and by G.N.S.A.G.A
of C.N.R.
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In this paper we shall be concerned with a different notion of
“reflection” which could be thought as a generalization of the classical
notion of point-reflection in an absolute plane. This notion of reflection
is introduced in an abstract way by means of suitable axioms (A1)-(A4)
stated for any arbitrary set ® of elements, named points (cf. §1).
Qur aim is to provide the point set ® with a line structure £ which
could be consistent with the reflection axioms. This will be obtained
by means of a new set of axioms: (D1)-(D3); in this way (®, £) turns
out to be an incidence space (cf. e.g. [3], [4]) (linear space or line
space in other Authors) and furthermore in £ a parallelism relation
can be defined (§ 2). The reflections defined by the axioms (Al)-(A4)
give rise to a set of involutory dilatations and a transitive set of
translations for the space (®, £, #) (§ 3). This allow us to provide
the incidence space (®, £, #) whit a structure of incidence loop with
porallelism which is unique up to isomorphisms (§ 4).

1. - Existence of reflections

Let ® be a set of elements, which henceforth we shall call points.
Let us assume for each point a € @ a bijection §: ® — @, x — d (%)
is defined such that the following axioms are fulfilled:

Al. v e ®:Z(x) =z,

A2. ¥V a,bz€e®, a#b = a(x)#b),
A3. Vvae®:a*:=d-.d=1d

Al vr,ye® 3ac®:d(x)=1y.

Henceforth these bijections will be called reflections. In the follow-
ing we shall always denote by ““id” the identity map and by “o”
the composition of mappings. Thus we have:

1.1. - Let a, b, x, ¥y be any points of ®; then:
N)zx#a = d()=Z2;
(i) if for some z€® it is @ (2) = b(2), then o = b;
(i) if @) =y, then G(y) = .
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ProOOF. -
(i) By (A2) and (Al): a # 2z = d(x) # & (2) = z.

(i) If @ # b by (A2) we have for any z ¢ ® d(x) # b(x) which
is a contradiction.

(i) Immediate by (A3). m]
From (1.1, i) it follows immediately:

1.2. - For any z, y € ®, the element u € ® which exists by (A4)
15 uniquely determined.

If we denote ®: = [d:a € ®], let us define:

E:=@Po®P:=[dob:a, be® .

By (A3) id € . Then:

18. - () For each 7€E\{id], vz € ® we have: 7(x) # x;
(ii) & acts transitively on @.
PRrROOF. - (i) Let us suppose y € ® such that 7(y) = y. Then if

we denote 7: = dob, we have dob (y) = y which implies & () = b (y),
by (A3), and thus by (1.1, ii) @ = b i.e. 7 = 4d, which is a contradiction.

(ii) For any x,y € ®, by (Al) and (A4) there exists a € ® such
that d(x) = doZ(x) = y. (u]
1.4. - The following conditions are equivalent:
(1) © acts regularly on @
(i) oo c &
(ili) B0 = &;

(V) & is a group.

PRrROOF. -

(i) = (ii). By assumption for any 7,, 7, € % and for any z € ®,
7, (¥) = 7, () implies 7, = ,. For any d, ds, d3 € @, if z is any point
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of @, let us denote & the reflection, uniquely determined by (A4) and (1.2)
such that ¢ (d; (x)} = @1 0d» (¥). Then by assumption éods = d; o d, and
hence by (A3) G10G20d3 = #0d30d; = ¢ € @.

(i) = (iii). Since id € & we have: & € G0®. If 4,0b,, d20b,
are any mappings of %, by (ii) there exists ¢ € ® such that (4,080
0@ 0b;) = (diobyody)ob, = ob, € E; thus Bo% < B.

(iii) == (iv). By (A3), for any (@ob) € & we have (hod) = (dob)";
thus by (ii) and since id € 6,% is a group.

(ivy = (i). For any 7,, 7, €% and any z € ®, 1, (x) = 7, (z) Im-
plies 73’07, (¥) = x. Since by assumption 7;'0r, € & and by (1.3, i)
7307, = id, it follows 7, = 7, and thus because of the transitivity,
% is regular on ®. o

15. - If & is a group, themn it is commutative.

PROOF. - For any di, 4z, @3 € ®, by (1.4, ii) and (A3), d,0d;0ds
is involutory and then d,0do0ds = dyod,0d:. Thus for any & ob,
G208, €5 we have @ 0bod,0by = G30b,0d, 0 by = Grobrod 0b;
thus & is commutative. a

2. - The line structure
In ®x® an equivalence relation A is defined fulfilling the follow-
ing axioms:
Di.va,bce®:(a, bd)Alc,c) = a=0b
D2. va,z,y€®:(x,y) A (d(x), d(y);
D3. ¥ a, b, x € P, distinct: (a, z) A (z, b) & (a, 2) A (a, b).

21, - For any a,b c€ ® we have:
1) (a, b) A (b, a);
i) (e, ¢) A (e, d(c));
i) é(a) =b = (a,¢)A{c, b) and (a, c) A (a, b).
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PRrROOF. -

(i) Let us denote d € ® the uniquely determined point, by (A4)
and (1.2), such that d(a) =b and then d(b) = a. Thus by (D2)
(a,b) A (d(2), d () = (b, a).

(i) Follows from (D2) and (Al).
(iii) Follows from (D2), (i) and (D3). |

Let us define for any a,0€®, a # b:
(1) a,b:={xe®:(a,2)A(a,b) Uial.

Of course, by definition is @, b € a, b; furthermore we have:
2.2 - For any a,be®, a = b, it is: a,b\{a, b = 0.

PROOF. - By (A4) it exists ¢ # a, b such that é(a) = b; then, by
(2.1, iii): (a,¢)A(a,d) that is c€a, b\ {a, b). O

23. For any o, be®, a#b:a, b=2>0a.

PROOF. - By (D3), vz €a,b\ (e, b :(a, 2) A (a,b) implies
(a, ) A (, b); then by (2.1, 1) and since A is transitive it is (b, x) A (b, a)
and thus x € b, a. Furthermore a, b € b, a by definition. Therefore
2. b S b,a, and with the same arguments: b, a € a, b. O

2.4. - For any c€a,b\{aj:a,¢=a,b.

PROOF. - By definition vz € a, b\ [a} : (a, x) A (a, b) A (e, ¢) implies
r€a,c,beqw ¢ ie. o, b S @ c With the same argument, since
a, c b,

e.
bea,c\{a}:q,c S a,b o]

25, - For any ¢c,e€a,b,c #e:¢, e =aqa,b.

PROOF. - If ¢ = a, the theorem is proved by (2.4). c€a,b \ (g
implies by (2.4) a, b = @, ¢; then again by (2.4) e€a,b\{c] = ¢ a\ [¢
implies ¢, @ = ¢, €. O
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The set of points o, b will be called the line a,b. By (2.4) we
have [a,b| > 3.

The set of all lines defined by (1) will be denoted by £ and
thus the pair (®, £) turns out to be an incidence space. For any
a. b ce® a#b let us define:

(2) {cZa,bl:=[xe®:(c2) Al(a,b) Ule

26. - {¢#a, b} is a lne and [c7a,b) = a,b when c€ a, b.

PROOF. -

@) If ¢ = o the definition (2) coincides with (1). If ¢ € a, b\ (a/,

by definition for any z € [¢#a, 8] \ {c] we have (a, ¢) A (a, b) A (¢, ) and

thus (¢, z) A (¢, @) which implies {¢#a, b] = ¢, a = a, b, because of (2.4).

(ii) Let us suppose ¢ ¢ a, b; by (A4) there exists a point u such
that 4 (@) = ¢. Then by (D2) V x € {cZa, b} \ {e] : (¢, 2) A (a, b) A (c, 4 (b));
hence by denoting e: = % (b)) we have (¢, ) A (a, b) A (¢, €) and thus by
definition (1) {¢Za, b] = ¢, e. m|

Because of (2.2) and (2.6) we have proved that |[c7a,b|| > 3;
thus v (a, b) € ®?, v ¢c € @ there exists at least one point e¢ such that
(c. e) A (a. b).

2.7. - For any e¢€ {c#a,b] we have [e7a, b = {cZua, b).

PROOF. - If {¢#a, b = a,b by (2.6) we have {e#q, b = a, b. If
e = ¢ the statement is trivial. Then let us suppose e # ¢ and ¢ ¢ a, b.
By definition ¢ € |c#a, b] \ [¢] implies (¢, ) A (a, b); then Vv € {c7a, b} \
\Nf{e}:(e,x) A(a,b)A(e,e) and by (D3) if = # e(c,z) A (c, ¢) implies
(¢, x) A (x, ¢). Thus (e, x) A (a, b) and hence x € [eZa, b}, i.e. {cZa, b
c {eza,b).

Since ¢ € |[e#a. b}, with the same arguments we have also
leZa, b € {c7a,b), and thus (eza, b = (c#a, b).

REMARLI. - Because of (2.7) we have, for any a, b, ¢, d € ®, with
a#bilcza,blN [d7a, b % @ implies {¢7a, b = i{d7a, b); in fact if
e€(Cza, b Nid7a,b), by (2.7) we have: {c7u, b = [e#a, b = [d7a, bl
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For any two lines a,b,¢,d, € £ let us now define:

a,bd 7 ¢, d <= (a,b)A,d).

Since A is an eguivalence relation, # 1is also an equivalence rela-
tion. Furthermore, because of (2.6), for any a,b € £ and any c € ®
there exists a line L € £ such that ¢ € L and L # a, b. Actually we
have L : = |¢#a, bj. Moreover by (2.7) this line L is unique. Thus “~7”
is an equivalence relation defined in £ which fulfils the Euclidean ax-
iom; “#” will be called parallelism and the triple (®, £, #) turns

out to be an incidence space with parallelism.

3. - The reflection geometry

We can now study some properties of an incidence space with
parallelism endowed with a set of reflections as defined in § 1.

31. - For any L€ £ and aec ® we have:
(i) al)e £ and a(l) 7 L;
() dL)y=L & ne€lL.

PROOF. -

(i) Let be L=:%7=(x€®:(u,2) A v) Ufu; then a(L)=
= (@ (@) : (u, 2) A (4, v)) U }d (u)) and since by (D2) (u, 2) A (d (), @ (2)), by
denoting u: = d () we have by (2): d(L) = {y € ®: (G (u), y) A (u, )] U
Ufg@) = (6w 2 Ll € £

() “<="IfaeL =:%7(u a) A (% v) implies by (D2) (@ (»), @) A
Au,v)ie a€(d(w # v = da(L) and thus d (L) = L because of the
Remark [, §2.

“=>" Let L = :%, v; by (D2) (u, a) A (a, u) A (e, @ (w)) which
implies, by (D8): (u, @) A (%, @ (v)). Furthermore a (L) = |d(w) # L] =
= L =%, v implies @ («) € %, v and thus (u, d@ (1)) A (u, ). Hence we have
{u, a) A (4, v) which means a € u, v. o



210 m. e. CARLO FELICE MANARA ¢ MARIO MARCHI

By (3.1) we have proved the following situation.

(®, £, 7) is an incidence space with parallelism where the set
of reflections ® : = {G:a € ®} is a set of wnwvolutory dilatations, acting
transitively on ® because of (A4).

Such an incidence space with the set @ of dilatations fulfilling
the axioms (A1)-(A4) will be denoted henceforth by (®, £, 7, ®) and
will be called a point-reflection geometry.

Furthermore by (1.83) €: = ®Po® = [aob:a. b e ®] is a set of
translations acting (ransitively on ®. Henceforth we shall denote by
D= Aut (®, £, 7) the group of all dilatations of (®, £, #) and by I
the set of all translations, i.e. fixed-point-free dilatations, of (®, £, #)
together with the identity map ““id’.

Now, by denoting u € ® a distinguished point, let us define

C:=@Fou=[dou:ae®.

Thus € is a set of translations acting regularly on ®. In fact
v,y € @, since by (A4) it exists ¢ € ® such that ¢ (y) = % (z) we have
¢+4(x) =y and thus C is transitive.

Furthermore if ¢o# (2) = €04 (x) we have, by denoting 2 : = 4 (),
¢ (2) = & (2) which implies, by (1.1, ii) ¢ = & Furthermore we have: id € C.

32. - The set © is a group if and only if € =95,

PrOOF. - “ => " By definition € € &. On the other hand for
any Gob €%, if ¢ € ® is the point, uniquely determined by (A4), such
that é(u) = 2o b (u), we have by (1.4, i) Gob = o and then B < €.

‘<=7 By definition € is acting regularly on ® and thus by
(1.4) % is a group. a

83. - In (®, £, 7, ®) the followings hold:

1) for any three non collinear points a, b, ¢ the parallelogram configura-
tion holds, i.e.: b7, ¢l N{cZa, b # B furthermore in any paralle-
logram (a, b, ¢, 2) the diagomal lines do meet;

1) if 6 €Aut(®, £, 7)\ lid] with & = 1id, then & ¢ @.
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PrOOF. -

(i) Let u € ® be the point, uniquely determirﬂ by (A4). such
that 4 (b) = ¢. Then % (@, ¢) = [b7@.¢), @ (a, b) = [c#a, b) and s0 (2} : =

= (@(e) = b#@, ¢l N{c’a, b # 0 since 4 is a bijection on ®. Thus

W =& END, e

(i) Let a € ® be any point with §(a) # @ and b: = §(a). For
any z € ® \ a0, b we have 6(x): = 8(@, 2Nk, 2) = (bsq, 1 N{arb, x], and
8 (x) does exist since 6 is a bijection. If » € @ is the point, uniquely
determined by (A4), such that i(a) = b, by (1) we have u (x) = § ()
and thus, since & and 7 are dilatations, & = 4. |

REMARK 1. - As a consequence of (3.3, ii), in (@, &, 7, ®) do
not exist involutory translations.

Because of (3.3, i) the following configurational proposition (7)
holds in any point-reflection geometry (®, £, 7, ®).

3.4. - For any three non collinear pownts ay, az, a3 € ® there exist
three mon collinear points by, by, by such that (configuration T):

(bl 1 = (@170, @3) N [@2# Ty, 3] # &
b : = (02781, a3) N (237 Ty, G2} # B;
{ba) 1 = [as70r, @2) N{a1 7Tz, a3} # B.

The triangle Tr (a,), a2, a3) is said to be inseribed in Tr (by, bz, b3)
and furthermore Tr (a., a2, a3) and Tr (by, b2, b3) are said to be similar.
By (3.4) we know that any triangle Tr (ai, @2, a3) can be inscribed
in a similar one but we don't know if, vice versa, any triangle Tr
(b1, b2, b3) can circumscribe a similar one.

By definition we know that & := ®o® < 3¢ < D and, since
de®, ®c PoPo® < D. What in general we don’t know is whether
(for any a, b, ¢ € ®) the dilatation doboé has one fixed point or not.
In other words it is not known whether in a general point-reflection
geometry (®, £, 7, ®) it is o ®o® NI = B or not. Furthermore if
®o®o® NI =0, the proper dilatation Goboé (for any a, b, ¢ € @)
can be involutory or not.
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When doboé is involutory (for any e, b, ¢ € ®) we have by (3.3, ii):
®PoPo® < ® and thus Po®o® = @. In this case by (1.4) & is a
commutative group.

3.5. Let ay, az, as € ® be non collinear and such that 8: = @100
is a proper dilatation; let us denote by x the fixed points of 8. Then
three points by, by, by € @ are uniquely determined such that, for any
permutation (i,7, k) of (1, 2, 8), it holds:

a; € b, by, by = di (by), by =z,
this implies also:
diod;ody () = bj.

PROOF. - @1 0d204ds (x) = x implies d o ds (x) = @ (z); thus by de-
noting by : = d: (x), b2: ==z, bs: = G {x) we have d, (b)) = b3 and, by
(D2) and the definition (1) of line, a; € b;, bn. a

REMARK II. - The triangle Tr (a., a2, as) defined in (3.5) is in-
scribed in Tr (b1, bz, b3); Tr (b1, bz, b3) will be said the fized-points-triangle
for the triple of reflections {di, dz, @}. Now by (3.3) let us denote by
(e : = (b;7b;, by} N {bu7b;, b;); then the triangle Tr (ci, ¢a, ¢1) circumseribes
the similar triangle Tr (i, b3, b3). Hence, since by (3.3, i) @ () = bn
implies also di(c) = b;, we have:

aiodjody(cn) = Ci-

Using the same notations of (8.5) and Remark II, we can now
state the following propositions. Actually (38.6) and (8.7) follow immedi-
ately from (3.5) and (A4).

3.6. - For any ai, a3, x € ® non collinear, one point a: € ® 1s
uniquely determined such that & od;oas(x) = 2.

3.17. - For any by, bz, bs € @ non collinear. a triple of reflections
{d1, @2, 3} admitting Tr (b, ba, b3) as the fixed-poinis-triangle s unique-
ly determined.
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3.8. - For any by, bz, by € @ non collinear, if Tr (by, ba, bs) is the
Sfixed-points-triangle for a triple of reflections [d1, 42, @3], Tr (2. as, as)
1s nscribed and stmilar to Tr (by, b2, bs) of and only if © s a group.

PROOF, - ' <= " By (1.5) the group & is commutative. In this
case we know (cfr. [1]) that, for any 7 € © and for any x € ®, L € &,
L 7 x, r(x) implies 7(L) = L. With the notations of (3.5) we have
@ 0dn (b)) = b and d; 0 dy € G; hence @ 0 dn (bi, bu) = (bnZ bs, bu} = b, bn.
Otherwise d; o dn (an) = d; (an) € @, @, implies d; o dn (@, &n) = G, 8. Thus

“ =" Again with the notations of (3.5) and Remark II we
have: dyodi(bn) = bi and o G (b;) = cn. By assumption by, bs, by are
any three non collinear points and 7: = d,0d; € & is a translation of
% mapping by onto b and b; onto en. Then 7 fulfils the law of parallelo-
grams i.e. [r(b)] = [b7b;, ba} N [bi#b;, bn] and then acts regularly on
®; this implies by (1.4) that & is a group. (u}

Let now L be any line. We shall denote L: ={de®:a¢L,
BL:=Lol =(dob:a, beL].

By (3.1) we have L (L)=L and By (L) = L. Thus LoLolL is
a set of dilatations with the possible fixed point on L.

By (1.4), since the axioms (Al)-(A4) are independent from the
axioms of the line structure we have:

3.9. - Let L be any line of a point-reflection geometry (®, £, #, ®).
Then the following conditions are equivalent:
i) B acts regularly on L;
iy LoLoL =L;
i) 61 18 a group.

4. - The associated incidence loop

It is well known (see e.g. [5]) that an incidence space with
parallelism (®, £, #) together with a regular set of translations 8 can
be represented as an incidence loop in the following way.
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If 1 is a distinguished point of ®, for any point a € ® let us
denote a* the uniquely determined translation a® € 8§ such that e* (1) = a.
Then we can define in @ a composition low ‘“+” by denoting for any
a,be® a+b:=a*®) =a*ob” (1), in this way (®, £, #, ¢) turns out
to be an incidence loop with parellelism (cf. [3] and [5]). In the present
situation, we can assume 8 : = © and for the sake of semplicity 1: = u.
As a consequence for any a € @, if we denote am € @ the point, unique-
ly determined by (A4) and (1.2), such that dm (u) = a, we shall have:

(3) a*:=dmotu;

and, for any a,b € @®:
4 a-b:=a"(b)=0a¢"0b" () = Gno 0 by (1) = (Gmo) ().

Then with the usual notations (cfr. [3]) we shall represent by
(®, ) the set @ of points endowed with the loop structure defined in
3), by £: = {aL :a € ®, u € L € £] the set of lines and by the condition:

oL # b M = L =M

the parallelism relation between nay two lines al, bM € £. Further-
more the left multiplication in (®, =) will represent the translations
of the set €. The incidence loop with parallelism (®, £, #, +) defined
in this way from the reflection geometry (®, £, 7, ®) will be called
wncidence loop with reflections and will be denoted by (®, £, #, », ~).

4.3. - Let (®, £, 7, +, ~) be an incidence loop with reflections
as previously defined. The following properties hold.

i) CoC € F;
N vae®3a ' €® such that: o 'a = aa™ = u;

i) vae®: (@) "' = (@™ V)" then €' =

\
®

Vyvae®:i(a)=ah

VIVae®:dw =a.
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PROOF. -

(i) Let be dow, boi € €. Since (Hobow) (Wobou) = id, the dila-
tation @oboi is involutory and thus by (8.3, ii) it exists ¢ € ® with
¢:=wobou; this implies dostoboil = doce&.

(i) By |6] and |7] it will be enough to prove that, for any «, 8 € C,
aof(u) = u implies Sow () = u. Actually let us denote o: = dm 014,
B:=bnoil; then u = €« 08 (4) = dm 0% 0 by 0% () = Gm O 7 O b (w) implies
ben 0780 am () = %. Then B0 (1) = bm 0% 0 i O (U) = b 0% O i (4) = %

and thus by [6] (proposition 1.2) or |7] (proposition 4, § 2) it exists a™'.

(iii) By definition and by (ii) we have ¢ » a™' = @ (a™') = » which
implies a™' = (¢°)”! (w). Otherwise, again by definition, o' = (¢7")" (w);
then (2*)™' () = (@) (w) that is a0 (@™")" () = u. By () a*0(a™") €&
which implies a*o(a™")" = id, ie. (")’ = (a*)"". By (i) ®' = @ and
thus ¢! = €.

(iv) Since 4, a* € D, # (@) = %o a* (u) = % 0dy o % (u). Furthermore
%Odm = (mo®W)™ ' = (@*) ' = (¢ ")". Then: s(a)=(a" ") oa(u) =a .

(v) Let us consider the dilatation &: = a*od@o(a®)"'; since
b(a) =a*ono(a’)'(a) =a*oi(u) =a and 608 = id, by (Al), (A2)
and (3.3, i) we have 8 = 4. Then by (iii) and (iv) 4 (u) =8 (u) =
=aouo(a’) ' (u)=nocuo@ ") (u)=a"o0u(e!)=a*(a) = o™

0

REMARK L. - In (4.1, i) we have proved that, for any b ¢ @ we
have #oboi € ®. By denoting ¢: = 4obou we obtain ¢ = é(c) =
=doboi(c), ie. wlc)=bou(c) Then, by (Al) and (A2) % (c) = b,
and by (4.1, iv) ¢ = b'. Hence (Gow@)o(bow) = doé = do(l’)‘:').

REMARK II. - By (4.1, v) we know that, for any b ¢ @, b (u) = b*
By (A4) and (1.2), for any a € ®, it exists a unique a, € ® such that
@m (1) = a and in this way we have defined a* by (3). Then by denoting
b: =am we can see that for any a € @ it exists the square root “b”
i.e. b€ ® such that b* = a.

4.2, - Let (®, £, 7, +) be an inecidence loop with parallelism fulfill-
g the following conditions:

i} if 1 denotes the unitary element of (®, «), for any a € ® there exists
a™' € ® such that ara'=a'ea=1;
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i) there exists a dilatation w € Aut (®, £, 2)\ [id] such that o (1) = 1,
w?=id and, for any a € ®, w(a) =a’’;

i) for any %, y € @ there exists a unique solution ‘o’ for the equation

() (@lz) (a'y)=1.

Then a set of reflections A : ® — ®; a — d can be defined fulfill-
ing the axioms (Al1)-(A4) such that (®, £, #, ®) is a point-reflection
geometry.

PROOF. - For any a € ® let us define: d: = a*ow(a®)""; since
a* is a translation for (®, £, #), (a*)™' € Aut(®, £, #) and thus
d € Aut (®, £, 7). Since by definition ¢ = a* (1) implies (¢*)™' () = 1,
we have d(a) = a*owo(e*) ' (a) = a*0w(l) = a and thus (Al) is ful-
filled. Furthermore by dod = g*owo(a*)'oa* cwo(a*) ' = id, (A3)
is fulfilled too. Since 1° = 4d we have also w = 1. In order to prove
the axioms (A2) and (A4) we have to compare (a*)”' and (¢ ')". By
the definition of a* we have (a*)'(a) = 1 and, by (i), a" (@) =1
implies (2°)"' (1) = a™"; furthermore by (i) we have (a™")* (@) = 1 and,
by definition, (¢™')° (1) = a™*. Thus since (a*)™', (a™")" € Aut (®, £, 7)
we have (a*)' = (a™)".

Let us now consider, for any z,y € @ the condition 4 (z) = ¥:
this is equivalent to a*owo(a*) ' (@) = y ie. wo(a*)™' () = (@) ().
By the properties of w and (z°)™' we have (@*) ' (@) = (@) () =a 'y
and wo(e*)' (z) = (@ ' »)"'. Then d (x) = y gives rise to the equation
(5) which has a unique solution o € ®@; thus (A2) and (A4) are fulfilled.
Furthermore, since ®: = [G:a € ® < Aut(®, £, #), the axiom (D2)
is fulfilled, while (D3) is a consequence of the existence of lines and
parallelism. O

REMARK 1II. - Let us suppose in the loop (®, +) the property
L.ILP. (left wnverse property; cf. [7]) holds, i.e. for any ao,b€ @ :
a (@b =(a"sa)b.

Then the existence of solutions for the equation (5) implies the
existence of square roots for any element of (®. ). Actually by assum-
ing z:=1, for any y € ®, the solution “a@’’ of (5) is such that
a'fa'@-a) =a '@ ea)ea) =1, ie y=a
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REMARK IV. - Let us now suppose that incidence loop (@, £, 7, *)
considered in (4.2) is provided as well with a set of reflections &
which means it is an ineidence loop with reflections (@, £, #, =, ~).
By (3.3, ii) we know that, for any a € ®, d € ®; thus, since d (a) = a.
by (A2) we have d = &; hence (®, £, 7, », ~) and (®, £, #, +, A) are
isomorphic.
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